Complete amino acid sequence of steer liver microsomal NADH-cytochrome b5 reductase.
نویسندگان
چکیده
The complete covalent structure of liver microsomal NADH-cytochrome b5 reductase from steer liver microsomes was determined. Cleavage at methionyl bonds gave 10 peptides accounting for all the residues of the protein. Acid cleavage of the reductase at the Asp-Pro bonds gave three peptides accounting for all the CNBr peptides in the molecule. Subfragmentation of these peptides by chemical and enzymatic cleavage provided overlaps which established all the fragments in an unambiguous sequence of 300 residues, corresponding to Mr 34,110. Limited tryptic digestion cleaved reductase at residues 28 and 119, yielding a preparation having two noncovalently linked peptides having a conformation which binds flavin and retains the structural features essential for NADH-cytochrome b5 activity. A model for the secondary structure of cytochrome b5 reductase is proposed that is based on computer-assisted analysis of the amino acid sequence. In this model the beta-turns are predominant and there is some 25% alpha and 30% beta structure.
منابع مشابه
Electron-transport pathway of the NADH-dependent haem oxygenase system of rat liver microsomal fraction induced by cobalt chloride.
The hepatic microsomal haem oxygenase activity of rats treated with CoCl2 was studied kinetically by measuring biliverdin, the immediate product of the reaction. Biliverdin was extracted with diethyl ether/ethanol mixture, and was determined by the difference between A690 and A800. The apparent Km value for NADPH (at 50 microM-haematin) was about 0.2 microM when an NADPH-generating system was u...
متن کاملNADH cytochrome b5 reductase and cytochrome b5 catalyze the microsomal reduction of xenobiotic hydroxylamines and amidoximes in humans.
Hydroxylamine metabolites, implicated in dose-dependent and idiosyncratic toxicity from arylamine drugs, and amidoximes, used as pro-drugs, are metabolized by an as yet incompletely characterized NADH-dependent microsomal reductase system. We hypothesized that NADH cytochrome b5 reductase and cytochrome b5 were responsible for this enzymatic activity in humans. Purified human soluble NADH cytoc...
متن کاملMechanism of C-5 double bond introduction in the biosynthesis of cholesterol by rat liver microsomes.
The dehydrogenation reaction of cholest-7-en-3beta-ol (I) to cholesta-5,7-dien-3beta-ol (II) in the presence of NADH was studied in rat liver microsomes and in microsomal acetone powder preparations, using [3alpha-3H]cholest-7-en-3beta-ol. It was found that the reaction was inhibited by menadione, adenosine diphosphate, potassium ferricyanide, and cytochrome c while p-cresol had no effect. Thes...
متن کاملTotal enzymic synthesis of cholesterol from lanosterol. Cytochrome b5-dependence of 4-methyl sterol oxidase.
Methyl sterol oxidase of microsomal synthesis of cholesterol from lanosterol is a mixed-function oxidase that is dependent upon reduced pyridine nucleotide. The methyl sterol oxidase, as well as NADH-cytochrome c reductase, in intact rat liver microsomes are inhibited by anti-cytochrome b5 immunoglobulin, but NADPH-cytochrome c reductase is not affected. There is a decreased time lag prior to o...
متن کاملMicrosomal electron-transport reductase activities and fatty acid elongation in rat brain. Developmental changes, regional distribution and comparison with liver activity.
Gestational and postnatal changes of microsomal NADH:cytochrome b5 reductase and NADPH:cytochrome c reductase activities were examined in rat brain. The specific activity of NADH:cytochrome b5 reductase was high at 18-19 days of gestational age, decreased to a minimum at 4 to 6 days after birth and increased thereafter. An essentially similar developmental pattern was observed for the specific ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 260 22 شماره
صفحات -
تاریخ انتشار 1985